MARKING SCHEME FOR SCIENCE 10 LAB ## **ANALYSIS OF SOLUTIONS** MAXIMUM = 8 DATA: ## (1) Table I: Results of Mixing KNOWN Solutions | | silver nitrate | hydrochloric
acid | sodium
carbonate | lead (II)
nitrate | sodium
chloride | potassium
iodide | |---|-------------------------|---------------------------------|---------------------------------|-----------------------------------|--------------------|----------------------------| | | AgNO₃ | HCI | Na₂CO₃ | Pb(NO ₃) ₂ | NaCl | KI | | silver nitrate AgNO₃ | | 1
White ppt | 2
White ppt | 3
— | 4
White ppt | 5
Pale yellow
ppt | | hydrochloric
acid
HCI | 1
White ppt | | 6
Bubbles,
clear solution | 7
White ppt | 8 — | 9 — | | sodium
carbonate
Na ₂ CO ₃ | 2
White ppt | 6
Bubbles,
clear solution | | 10
White ppt | 11
— | 12
— | | lead (II)
nitrate
Pb(NO ₃) ₂ | 3 — | 7
White ppt | 10
White ppt | | 13
White ppt | 14
Bright yellow
ppt | | sodium
chloride
NaCl | 4
White ppt | 8 — | 11
— | 13
White ppt | | 15
— | | potassium
iodide
KI | 5
Pale yellow
ppt | 9 — | 12
— | 14
Bright yellow
ppt | 15
— | | Table II: Results of Mixing UNKNOWN Solutions (1) | (1) | | | | | | | |--------------|----------------------------|----------------------|----------------------|--------------------|----------------------------|-----------| | | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | | | А | В | С | D | Е | F | | UNKNOWN
A | | White ppt | I | White ppt | Bubbles,
clear solution | I | | UNKNOWN
B | White ppt | | Bright yellow
ppt | ı | White ppt | White ppt | | UNKNOWN | _ | Bright yellow
ppt | | Pale yellow
ppt | _ | - | | UNKNOWN | White ppt | I | Pale yellow
ppt | | White ppt | White ppt | | UNKNOWN
E | Bubbles,
clear solution | White ppt | _ | White ppt | | _ | | UNKNOWN
F | _ | White ppt | _ | White ppt | _ | | ## **CONCLUDING QUESTIONS** 1. Show the results of your analysis by filling in the table below. (2.5) | Actual Chemical in Solution | UNKNOWN Bottle Label | | | |-----------------------------------|----------------------|--|--| | AgNO₃ | D | | | | HCI | Е | | | | Na₂CO₃ | Α | | | | Pb(NO ₃) ₂ | В | | | | NaCl | F | | | | KI | С | | | 2. You have been hired to analyze a water sample. The person bringing you the sample tells you that it is one of the following samples: a solution containing only Pb²⁺ a solution containing only Ag⁺, or a solution contain neither Pb²⁺ nor Ag⁺, but she does not know which sample it is. How could you use the results of your experiment to find what is in the sample you have been given? (1.5) Add KI: if the solution turns pale yellow, the sample contains Ag⁺ if the sample turns bright yellow, the sample contains Pb²⁺ if the sample does not turn pale or bright yellow, the sample contains neither Ag⁺ nor Pb²⁺. 3. Why isn't it necessary to mix the chemical combinations for the grey squares in Data Table I? (1) An ion won't react with itself or no reaction will occur. - 4. Why is it unnecessary to mix **BOTH** the solutions in the upper triangle of 15 squares **AND** the lower triangle of 15 squares in Data Table I? In other words, why is it permissible to copy the results from the upper set of 15 squares into the "kitty corner" set of 15 squares below the grey band? - The upper triangle might refer to adding A to B, while the lower triangle would refer to adding B to A. The two mixtures are the same and therefore do not need to be repeated.